Upload

QA #2 Series

background image

QuestionsΒ andΒ AnswersΒ SheetΒ 2

Β 

Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β  Β SeriesΒ 

Β 

QuestionΒ #1Β 

AΒ pairΒ ofΒ diceΒ isΒ rolledΒ untilΒ aΒ sumΒ ofΒ eitherΒ 5Β orΒ 7Β appears.Β FindΒ theΒ probabilityΒ thatΒ aΒ 5Β occurs first.Β Hint:Β 
LetΒ 
Β 

𝐸

𝑛

Β Β 

denoteΒ theΒ eventΒ thatΒ aΒ 5Β occurs onΒ theΒ nthΒ rollΒ andΒ noΒ 5Β orΒ 7Β occurs onΒ theΒ firstΒ n-1Β rolls.Β ComputeΒ 
Β 

𝑃(𝐸

𝑛

)

Β Β 

andΒ argueΒ thatΒ 
Β 

βˆ‘Β π‘›Β =Β 1

∞

𝑃(𝐸

𝑛

)

Β Β 

is theΒ desiredΒ probability.

Β 

Answer:Β 

Experiment:Β ThrowingΒ twoΒ fairΒ sixΒ sidedΒ dice.Β 
UseΒ theΒ notationΒ fromΒ theΒ exercise:Β 
Β 

𝐸

𝑛

Β Β -Β EventΒ thatΒ aΒ sumΒ ofΒ 5Β isΒ rolledΒ inΒ theΒ n-thΒ roll,Β andΒ neitherΒ 5Β orΒ 7Β wereΒ rolledΒ before.Β 

NowΒ every eventΒ whereΒ theΒ sumΒ ofΒ 5Β is rolledΒ beforeΒ 7Β is someΒ Β 

𝐸

𝑛

Β Β -Β becauseΒ theΒ checkingΒ ifΒ this eventΒ 

happenedΒ inΒ theΒ experimentΒ is:Β fromΒ theΒ beggingΒ watchΒ forΒ sumΒ ofΒ 5Β orΒ 7,Β ifΒ theΒ sumΒ ofΒ 5Β appearedΒ firstΒ 
bothΒ sums,Β letsΒ sayΒ inΒ n-thΒ rollΒ thisΒ is eventΒ Β 

𝐸

𝑛

Β Β 

WeΒ haveΒ 36Β equallyΒ likely possibilities forΒ every diceΒ roll,Β this means aΒ totalΒ ofΒ Β 

36

𝑛

Β Β possibilities.Β 

4Β ofΒ theseΒ Β 

36Β βˆ’Β (1,4),Β (4,1),Β (2,3),Β (3,2)

Β Β areΒ possibleΒ ifΒ theΒ sumΒ is 5Β andΒ 6Β areΒ possibleΒ if theΒ sumΒ is 7.Β 

ThisΒ leaves 26Β possibleΒ rolls thatΒ sumΒ upΒ toΒ aΒ numberΒ that's notΒ 5Β orΒ 7.Β 
If Β 

𝐸

𝑛

Β Β happened,Β theΒ firstΒ n-1Β rolls areΒ someΒ fromΒ Β 

26

π‘›βˆ’1

Β Β vectors andΒ theΒ lastΒ oneΒ is oneΒ ofΒ 4Β rolls.Β 

This ciuntingΒ uses theΒ basic principleΒ ofΒ countingΒ thatΒ laterΒ translates toΒ indepence.Β 

Β 

𝑃(𝐸

𝑛

)Β =

26

π‘›βˆ’1

β‹…4

36

𝑛

=

4

36

(

26

36

)

π‘›βˆ’1

=

1

9

(

13

18

)

π‘›βˆ’1

Β Β 

Β 

βˆ‘

𝑃(𝐸

𝑛

)

∞

𝑛=1

=Β βˆ‘

1

9

(

13

18

)

π‘›βˆ’1

∞

𝑛=1

Β Β 

Β 

=

1

9

βˆ‘

(

13

18

)

π‘˜

∞

π‘˜=0

Β Β 

Β 

=

1

9

β‹…

1

1βˆ’

13
18

Β Β 

Β 

=

1

9

β‹…

1

5

18

Β Β 

Β 

=

1

9

β‹…

18

5

Β Β 

Β 

=

2

5

Β Β 

Result:Β Β 

2

5

Β 

Β 

QuestionΒ #2Β 

ProveΒ thatΒ Β 

1Β Β·Β 1!Β +Β 2Β Β·Β 2!Β +Β·Β·Β·Β +𝑛 · 𝑛!Β =Β (𝑛 +Β 1)!Β βˆ’Β 1

Β wheneverΒ nΒ is aΒ positiveΒ integer.

Β 

Answer:Β 

ToΒ proofΒ Β 

1Β β‹…Β 1!Β +Β 2Β β‹…Β 2!Β +Β β‹―Β + 𝑛 ⋅ 𝑛!Β =Β (𝑛 +Β 1)!Β βˆ’Β 1

Β Β forΒ every positiveΒ integerΒ n.Β 

ProofΒ byΒ inductionΒ 

LetΒ Β 

𝑃(𝑛)

Β beΒ Β 

1Β β‹…Β 1!Β +Β 2Β β‹…Β 2!Β +Β β‹―Β + 𝑛 ⋅ 𝑛!Β =Β 1Β β‹…Β 1Β =Β (𝑛 +Β 1)!Β βˆ’Β 1

Β Β 

Basis stepΒ n=1Β 

Β 

1Β β‹…Β 1!Β +Β 2Β β‹…Β 2!Β +Β β‹―Β + 𝑛 ⋅ 𝑛!Β =Β 1Β β‹…Β 1!Β =Β 1Β β‹…Β 1Β =Β 1

Β Β 

Β 

(𝑛 +Β 1)!Β βˆ’Β 1Β =Β (1Β +Β 1)!Β βˆ’Β 1Β =Β 2!Β βˆ’Β 1Β =Β 2Β βˆ’Β 1Β =Β 1

Β Β 

WeΒ thenΒ noteΒ P(1)Β is true.Β 

background image

InductionΒ stepΒ letΒ Β 

𝑃(π‘˜Β +Β 1)

Β Β isΒ alsoΒ trueΒ 

Β 

1Β β‹…Β 1!Β +Β 2Β β‹…Β 2Β +Β β‹―Β +Β π‘˜Β β‹…Β π‘˜!Β =Β (π‘˜Β +Β 1)!Β βˆ’Β 1

Β Β 

WeΒ needΒ toΒ proveΒ thatΒ Β 

𝑃(π‘˜Β +Β 1)

Β Β isΒ alsoΒ true.Β 

Β 

1Β β‹…Β 1!Β +Β 2Β β‹…Β 2!Β +Β β‹―Β +Β π‘˜Β β‹…Β π‘˜!Β +Β (π‘˜Β +Β 1)Β β‹…Β (π‘˜Β +Β 1)!

Β Β 

Β 

=Β (π‘˜Β +Β 1)!Β βˆ’Β 1Β +Β (π‘˜Β +Β 1)Β β‹…Β (π‘˜Β +Β 1)!

Β Β 

Β 

=Β 1Β β‹…Β (π‘˜Β β‹…Β 1)!Β βˆ’Β 1Β +Β (π‘˜Β +Β 1)Β β‹…Β (π‘˜Β +Β 1)!

Β Β 

Β 

=Β 1Β β‹…Β (π‘˜Β +Β 1)!Β +Β (π‘˜Β +Β 1)Β β‹…Β (π‘˜Β +Β 1)!Β βˆ’Β 1

Β Β 

Β 

=Β (1Β +Β π‘˜Β +Β 1)(π‘˜Β +Β 1)!Β βˆ’Β 1

Β Β 

Β 

=Β (π‘˜Β +Β 2)!Β βˆ’Β 1

Β Β 

Β 

=Β ((π‘˜Β +Β 1)Β +Β 1)!Β βˆ’Β 1

Β Β 

WeΒ thenΒ noteΒ thatΒ Β 

𝑃(π‘˜Β +Β 1)

Β Β is alsoΒ true

Β 

QuestionΒ #3Β 

FindΒ theΒ MaclaurinΒ seriesΒ forΒ f(x)Β usingΒ theΒ definitionΒ ofΒ aΒ MaclaurinΒ series.Β [AssumeΒ thatΒ fΒ has aΒ powerΒ 

seriesΒ expansion.Β DoΒ notΒ showΒ thatΒ Β 

𝑅𝑛(π‘₯)Β β†’Β 0

Β .]Β AlsoΒ findΒ theΒ associatedΒ radius ofΒ convergence.Β Β 

𝑓(π‘₯)Β =

2

π‘₯

Β 

Answer:Β 

FindΒ aΒ fewΒ derivatives,Β andΒ calculateΒ theirΒ values atΒ a=0.Β 

Β 

𝑓(π‘₯)Β =Β 2

π‘₯

𝑓(0)Β =Β 1

Β Β 

Β 

𝑓(π‘₯)Β =Β (lnΒ 2)2

π‘₯

𝑓

β€²

(0)Β =Β lnΒ 2

Β Β 

𝑓(π‘₯)Β =Β (lnΒ 2)

2

2

π‘₯

𝑓

β€²β€²

(0)Β =Β (lnΒ 2)

2

Β Β 

Β 

𝑓(π‘₯)Β =Β (lnΒ 2)

3

2

π‘₯

𝑓

β€²β€²β€²

(0)Β =Β (lnΒ 2)

3

Β Β 

Β 

𝑓

(4)

(π‘₯)Β =Β (lnΒ 2)

4

2

π‘₯

𝑓

(4)

(0)Β =Β (lnΒ 2)

4

Β Β 

PlugΒ everythingΒ intoΒ theΒ MaclaurinΒ generalΒ formΒ 

Β 

𝑓(π‘₯)Β = 𝑓(0)Β +

𝑓

β€²

(0)

1!

π‘₯Β +

𝑓

β€²β€²

(0)

2!

π‘₯

2

+

𝑓

β€²β€²β€²

(0)

3!

π‘₯

3

+Β β‹―

Β Β 

Β 

𝑓(π‘₯)Β =Β 1Β +

lnΒ 2

1!

π‘₯Β +

(lnΒ 2)

2

2!

π‘₯

2

+

(lnΒ 2)

3

3!

π‘₯

3

+

(lnΒ 2)

4

4!

π‘₯

4

+Β β‹―

Β Β 

FindΒ theΒ patternΒ ofΒ theΒ numbers toΒ eriteΒ inΒ summationΒ formΒ 

Β 

𝑓(π‘₯)Β =Β βˆ‘

(lnΒ 2)

𝑛

π‘₯

𝑛

𝑛!

∞

𝑛=0

Β Β 

UseΒ theΒ RatioΒ TestΒ 

Β 

π‘Ž

𝑛

=

(lnΒ 2)

𝑛

π‘₯

𝑛

𝑛!

Β Β 

1

1

1

(lnΒ 2)

!

(lnΒ 2)

|

|Β |

|Β |

|

(

1)!

(lnΒ 2)

1

n

n

n

n

n

n

a

x

n

x

a

n

x

n

+

+

+

=

οƒ—

=

+

+

Β 

(lnΒ 2)

limΒ |

|Β 0

1

n

x

n

β†’ο‚₯

=

+

Β 

TheΒ limitΒ is <1Β forΒ allΒ xΒ soΒ itΒ converges forΒ allΒ realΒ numbers andΒ theΒ radius ofΒ convergesΒ is

4

(

0)

)Β /Β (6

1)

0

k

lim

k

k

+

+Β =

Β 

Β 

𝑅 = ∞

Β 

Β 

background image

QuestionΒ #4Β 

Express theΒ definiteΒ integralΒ asΒ anΒ infiniteΒ seriesΒ andΒ findΒ itsΒ valueΒ toΒ withinΒ anΒ errorΒ ofΒ atΒ mostΒ 

Β 

10

βˆ’4

Β Β 

Β 

∫ cos(π‘₯

2

) 𝑑π‘₯

1

0

Β 

Β 

Answer:Β 

Term-by-TermΒ DifferentiationΒ andΒ IntegrationΒ 

Β 

𝐹(π‘₯)Β =Β βˆ‘

π‘Ž

𝑛

(π‘₯Β βˆ’Β π‘)

𝑛

∞

𝑛=0

Β Β 

has radiusΒ ofΒ convergenceΒ Β 

𝑅 >Β 0

Β .Β ThenΒ FΒ is differentiableΒ onΒ Β 

(π‘Β βˆ’Β π‘…, 𝑐 + 𝑅)

.Β Furtehermore,Β weΒ canΒ 

integrateΒ andΒ differentiateΒ termΒ by term.Β ForΒ Β x\in(c-R,c+R)Β Β 

Β 

𝐹(π‘₯)Β =Β βˆ‘

π‘›π‘Ž

𝑛

(π‘₯Β βˆ’Β π‘)

π‘›βˆ’1

∞

𝑛=1

Β Β 

Β 

∫ 𝐹(π‘₯)𝑑π‘₯Β = 𝐴 +Β βˆ‘

π‘Ž

𝑛

𝑛+1

(π‘₯Β βˆ’Β π‘)

𝑛+1

∞

𝑛=0

Β (AΒ any constant)Β 

TheseΒ series haveΒ theΒ sameΒ radius ofΒ convergenceΒ RΒ 

HereΒ weΒ needΒ toΒ findΒ theΒ valueΒ ofΒ Β 

𝐹(π‘₯)Β = ∫ cos(π‘₯

2

) 𝑑π‘₯

1

0

Β Β weΒ willΒ useΒ theΒ expansionΒ ofΒ theΒ Β 

cosΒ π‘₯

Β Β 

FromΒ tableΒ 2,Β WeΒ haveΒ MaclaurinΒ Series Β 

𝑓(π‘₯)Β =Β cosΒ π‘₯Β =Β βˆ‘

(βˆ’1)

𝑛 π‘₯

2𝑛

(2𝑛)!

∞

𝑛=0

=Β 1Β βˆ’

π‘₯

2

2!

+

π‘₯

4

4!

βˆ’

π‘₯

6

6!

+Β β‹―

Β Β 

convergesΒ forΒ forΒ allΒ xΒ hereΒ xΒ isΒ replacedΒ withΒ Β 

π‘₯

2

Β Β 

Β 

cosΒ π‘₯

2

=Β βˆ‘

(βˆ’1)

𝑛 (π‘₯

2

)

2𝑛

(2𝑛)!

∞

𝑛=0

Β Β 

Β 

cosΒ π‘₯

2

=Β βˆ‘

(βˆ’1)

𝑛 π‘₯

4𝑛

(2𝑛)!

𝑑π‘₯

∞

𝑛=0

Β Β 

Β 

∫ cosΒ π‘₯

2

1

0

𝑑π‘₯Β =Β βˆ‘

𝑖𝑛𝑓𝑑(βˆ’1)

𝑛

1

(4𝑛+1)(2𝑛)!

\
𝑛=0

Β Β 

NowΒ weΒ needΒ toΒ findΒ outΒ F(1)Β errorΒ less thanΒ 0.0001Β 

Β 

∫ cosΒ π‘₯

2

1

0

𝑑π‘₯Β =Β βˆ‘

(βˆ’1)

𝑛

1

(4𝑛+1)(2𝑛)!

∞

𝑛=0

Β Β 

AboveΒ isΒ alternatingΒ seriesΒ withΒ Β 

π‘Ž

𝑛

=

1

(4𝑛+1)(2𝑛)!

Β Β 

UsingΒ theΒ errorΒ theΒ boundedΒ ofΒ alternatingΒ seriesΒ Β 

|∫ cosΒ π‘₯

2

1

0

𝑑π‘₯Β βˆ’Β π‘†

𝑁

|Β <Β π‘Ž

𝑁+1

Β 

Β 

π‘Ž

𝑁+1

=

1

(4𝑁+5)(2𝑁+2)!

<Β 0.0001

Β Β 

Β 

β‡’Β (4𝑁 +Β 5)(2𝑁 +Β 2)!Β >Β 10000

Β Β 

forΒ N=2Β weΒ haveΒ Β 

(4𝑁 +Β 5)(2𝑁 +Β 2)!Β =Β 13Β Γ—Β 6!Β =Β 9360Β <Β 10000

Β Β 

forΒ N=3Β weΒ haveΒ Β 

(4𝑁 +Β 5)(2𝑁 +Β 2)!Β =Β 17Β Γ—Β 8!Β =Β 685440Β >Β 10000

Β Β soΒ weΒ chooseΒ N=3Β 

Β 

∫ cosΒ π‘₯

2

1

0

𝑑π‘₯Β β‰ˆΒ βˆ‘

𝑛

=Β 0

∞

(βˆ’1)

𝑛

1

(4𝑛+1)(2𝑛)!

Β Β 

∫ cosΒ π‘₯

2

1

0

𝑑π‘₯Β =Β 1Β βˆ’

1

5Β Γ—Β 2!

+

1

9Β Γ—Β 4!

βˆ’

1

13Β Γ—Β 6!

Β 

Β 

∫ cosΒ π‘₯

2

1

0

𝑑π‘₯Β =Β 0.904522792

Β Β 

Result:Β Β 

∫ cosΒ π‘₯

2

1

0

𝑑π‘₯Β =Β 0.904522792

Β 

Β 

QuestionΒ #5Β 

ApproximateΒ theΒ sumΒ ofΒ theΒ series correctΒ toΒ fourΒ decimalΒ places.Β 

background image

Β 

βˆ‘Β π‘›

∞

𝑛

=

1(βˆ’1)

𝑛

3

𝑛

𝑛!

Β Β 

Answer:Β 

WeΒ knowΒ that,Β inΒ anΒ alternatingΒ series,Β theΒ estimateΒ errorΒ is smallerΒ thanΒ theΒ firstΒ neglectedΒ term.Β That'sΒ 

whyΒ weΒ willΒ apply.Β WeΒ canΒ seeΒ thatΒ weΒ have:Β 

Β 

|𝑅

𝑛

| ≀ 𝑏

𝑛+1

=

1

3

𝑛+1

(𝑛+1)!

<Β 0.00001

Β Β 

SinceΒ this canΒ beΒ aΒ toughΒ inequalityΒ toΒ solve,Β weΒ canΒ useΒ graphingΒ calculatorΒ toΒ figureΒ outΒ forΒ whichΒ nΒ thisΒ 

willΒ aply.Β WeΒ canΒ seeΒ thatΒ weΒ have:Β 

Β 

1

3

5

5!

β‰ˆΒ 0.00003Β >Β 0.00001Β >

1

3

6

6!

β‰ˆΒ 0.000002

Β Β 

Therefore,Β weΒ needΒ toΒ addΒ atΒ leastΒ 5Β terms forΒ theΒ errorΒ toΒ beΒ less thanΒ Β 

0.00001

Β ,Β thatΒ is,Β forΒ ourΒ 

approximationΒ toΒ beΒ correctΒ toΒ theΒ fourthΒ decimal.Β NowΒ weΒ have:Β 

Β 

𝑠

5

=Β βˆ‘

(βˆ’1)

π‘˜

3

π‘˜

π‘˜!

5

π‘˜=1

β‰ˆΒ βˆ’0.28347

Β Β 

TheΒ sumΒ ofΒ theΒ seriesΒ isΒ approximatelyΒ 

βˆ’0.28347

Β 

QuestionΒ #6Β 

findΒ aΒ formulaΒ forΒ anΒ forΒ theΒ arithmetic sequence.Β Β 

π‘Ž

1

=Β βˆ’4,Β π‘Ž

5

=Β 16

Β 

Β 

Answer:Β 

Generic formulaΒ forΒ anΒ arithmetic sequenceΒ inΒ whichΒ nthΒ termΒ equals theΒ firstΒ termΒ plus theΒ commonΒ 

differenceΒ times theΒ numberΒ ofΒ differences betweenΒ theΒ firstΒ termΒ andΒ theΒ nthΒ term:Β 

Β 

π‘Ž

𝑛

=Β π‘Ž

1

+ 𝑑(π‘›Β βˆ’Β 1)

Β ,Β thenΒ 

1)Β Β 

π‘Ž

5

=Β π‘Ž

1

+Β 4

𝑑

Β Β 

Β 

16Β =Β βˆ’4Β +Β 4

𝑑

Β Β 

Β 

𝑑  =Β Β 5

Β Β 

2)Β Β 

π‘Ž

𝑛

=Β βˆ’4Β +Β 5(𝑛– 1)

Β Β 

Β 

π‘Ž

𝑛

=Β βˆ’4Β +Β 5

𝑛

– 5Β =Β 5

𝑛

βˆ’Β 9

Β Β 

Β 

QuestionΒ #7Β 

WriteΒ theΒ firstΒ fiveΒ terms ofΒ theΒ arithmetic sequence.Β Β 

π‘Ž

1

=Β 5, 𝑑 =Β 6

Β 

Β 

background image

Answer:Β 

ToΒ findΒ 5Β terms,Β addΒ 6Β toΒ eachΒ term.Β 

Β 

π‘Ž

2

=Β π‘Ž

1

+ 𝑑 =Β 5Β +Β 6Β =Β 11,Β π‘Ž

1

=Β 5; 𝑑 =Β 6

Β Β 

Β 

π‘Ž

3

=Β π‘Ž

2

+ 𝑑 =Β 11Β +Β 6Β =Β 17,Β π‘Ž

2

=Β 11; 𝑑 =Β 6

Β Β 

Β 

π‘Ž

4

=Β π‘Ž

3

+ 𝑑 =Β 17Β +Β 6Β =Β 23,Β π‘Ž

3

=Β 17; 𝑑 =Β 6

Β Β 

Β 

π‘Ž

5

=Β π‘Ž

4

+ 𝑑 =Β 23Β +Β 6Β =Β 29,Β π‘Ž

4

=Β 23; 𝑑 =Β 6

.Β Β 

TheΒ answerΒ is:Β 5,Β 11,Β 17,Β 23,Β 29.

Β 

QuestionΒ #8Β 

WhichΒ ofΒ theΒ followingΒ seriesΒ areΒ geometric?Β WhichΒ areΒ powerΒ ones?Β 

a)Β Β 

1Β +Β π‘₯/2Β +Β π‘₯

2

/4Β +Β π‘₯

3

/8Β +Β π‘₯

4

/16Β +Β β‹―

Β Β 

b)Β Β 

1Β Β +Β Β 1.1Β Β +Β Β 1.21Β Β +Β Β 1.331Β Β +Β Β 1.4641Β Β +Β Β 1.6105Β Β +   … 

Β 

c)Β Β 

(1/3)

2

+Β (1/3)

4

+Β (1/3)

6

+Β (1/3)

8

+Β β‹―

Β Β 

d)Β Β 

1Β +Β π‘₯Β +Β π‘₯

2

/(2!)Β +Β π‘₯

3

/(3!)Β +Β π‘₯

4

/(4!)Β +Β β‹―

Β Β 

e)Β Β 

1Β Β +Β Β 1/2Β Β +Β Β 1/3Β Β +Β Β 1/4Β Β +Β Β 1/5Β Β +  …

Β Β 

f)Β Β 

1/π‘₯

2

+Β 1/π‘₯Β +Β 1Β +Β π‘₯Β +Β π‘₯

2

+Β π‘₯

3

+Β π‘₯

4

+Β β‹―

Β 

Answer:Β 

a)Β Β 

1Β +Β π‘₯/2Β +Β π‘₯

2

/4Β +Β π‘₯

3

/8Β +Β π‘₯

4

/16Β +Β β‹―

Β Β is bothΒ powerΒ andΒ geometric series.Β 

b)Β 

1Β Β +Β Β 1.1Β Β +Β Β 1.21Β Β +Β Β 1.331Β Β +Β Β 1.4641Β Β +Β Β 1.6105Β Β +   …

Β Β is only powerΒ seriesΒ 

c)Β 

(1/3)

2

+Β (1/3)

4

+Β (1/3)

6

+Β (1/3)

8

+Β β‹―

Β Β is geometric series.Β 

d)Β Β 

1Β +Β π‘₯Β +Β π‘₯

2

/(2!)Β +Β π‘₯

3

/(3!)Β +Β π‘₯

4

/(4!)Β +Β β‹―

Β Β is geometric series.Β 

e)Β Β 

1Β Β +Β Β 1/2Β Β +Β Β 1/3Β Β +Β Β 1/4Β Β +Β Β 1/5Β Β +  …

Β Β is neitherΒ geometric norΒ powerΒ one.Β 

f)Β Β 

1/π‘₯

2

+Β 1/π‘₯Β +Β 1Β +Β π‘₯Β +Β π‘₯

2

+Β π‘₯

3

+Β π‘₯

4

+Β β‹―

Β Β is powerΒ series.

Β 

QuestionΒ #9Β 

TheΒ followingΒ series Β 

βˆ‘

π‘œ1/π‘˜

5

π‘œ

(π‘˜=0)

Β Β is:Β 

a)Β alternatingΒ seriesΒ 

b)Β convergentΒ p-seriesΒ 

c)Β divergentΒ p-seriesΒ 

d)Β geometric series

Β 

Answer:Β 

Β 

βˆ‘

π‘œ1/π‘˜

5

π‘œ

(π‘˜=0)

Β Β 

This seriesΒ is convergentΒ p-series.Β 

SinceΒ Β 

βˆ‘

π‘œ1/π‘˜

5

π‘œ

(π‘˜=0)

Β converges forΒ Β 

𝑝  >Β Β 1

Β Β andΒ divergesΒ forΒ Β 

𝑝  ≀  1Β 

Β 

SoΒ compareΒ this then:Β Β 

𝑝  =Β Β 5Β Β >Β Β 1

Β Β 

Thus,Β givenΒ series converges by p-series test.

Β 

QuestionΒ #10Β 

background image

ConsiderΒ twoΒ series Β 

βˆ‘

π‘œ1/2𝑝𝑖𝑛 

π‘œ

(𝑛=1)

and

Β βˆ‘

π‘œ1/𝑝𝑖

2

π‘œ

(𝑛=0)

𝑛

.Β WhichΒ ofΒ themΒ converges?

Β 

Answer:Β 

Series A:Β Β 

βˆ‘

π‘œ1/2𝑝𝑖𝑛

π‘œ

(𝑛=1)

=Β 1/2𝑝𝑖1/1Β +Β 1/2Β +Β 1/3Β +

Β Β 

Harmonic seriesΒ 

– DivergentΒ 

Series B:

βˆ‘

π‘œ1/𝑝𝑖

2

π‘œ

(𝑛=0)

𝑛 =Β (1/𝑝𝑖

2

)Β +Β (1/𝑝𝑖

2

)

2

+

Β 

Geometric series,Β soΒ Β 

1/𝑝𝑖

2

<Β 1

Β Β 

– ConvergentΒ 

Thus,Β only series BΒ converges.

Β 

QuestionΒ #11Β 

NameΒ theΒ series:Β 

a)Β Β 

βˆ‘(𝑛 =Β 0)

π‘œ

π‘œ(𝑓

𝑛

π‘₯π‘₯π‘Ž)/(𝑛!)π‘₯π‘₯(π‘₯β€“Β π‘Ž)

𝑛

Β Β 

b)Β Β 

βˆ‘(𝑛 =Β 0)

π‘œ

π‘œ(𝑓

𝑛

π‘₯π‘₯0)/(𝑛!)π‘₯π‘₯π‘₯

𝑛

Β Β 

Answer:Β 

a)Β Β 

βˆ‘(𝑛 =Β 0)

π‘œ

π‘œ(𝑓

𝑛

π‘₯π‘₯π‘Ž)/(𝑛!)π‘₯π‘₯(π‘₯β€“Β π‘Ž)

𝑛

Β Β is aΒ TaylorΒ series.Β 

b)Β Β 

βˆ‘(𝑛 =Β 0)

π‘œ

π‘œ(𝑓

𝑛

π‘₯π‘₯0)/(𝑛!)π‘₯π‘₯π‘₯

𝑛

Β Β is aΒ MaclaurinΒ series.Β 

QuestionΒ #12Β 

ClassifyΒ theΒ followingΒ series:Β 

Β 

1Β Β +Β Β 1/4Β Β +Β Β 1/9Β Β +Β Β 1/16Β Β +Β Β 1/25Β Β +   …

Β 

Β 

Answer:Β 

Β 

1Β Β +Β Β 1/4Β Β +Β Β 1/9Β Β +Β Β 1/16Β Β +Β Β 1/25Β Β +   …

Β Β 

Β 

1/1

2

+Β 1/2

2

+Β 1/3

2

+Β 1/4

2

+Β 1/5

2

+Β β‹―

Β ,Β soΒ Β 

βˆ‘

π‘œ1/(𝑛)

2

π‘œ

(𝑛=1)

Β Β 

Harmonic series areΒ givenΒ as:Β Β 

βˆ‘

π‘œ1/(𝑛)

𝑝

π‘œ

(𝑛=1)

Β ,Β inΒ theΒ aboveΒ seriesΒ pΒ = 2Β 

Hence,Β theΒ series wouldΒ beΒ classifiedΒ as aΒ p-seriesΒ withΒ 

𝑝  >Β Β 1

Β 

QuestionΒ #13Β 

ClassifyΒ whetherΒ this series convergesΒ 

Β 

βˆ‘(π‘˜Β =Β 1)

π‘œ

π‘œ((βˆ’1)

π‘˜

π‘₯π‘₯π‘˜)/(6π‘˜

4

+Β 1)

Β 

Β 

Answer:Β 

Β 

βˆ‘(π‘˜Β =Β 1)

π‘œ

π‘œ((βˆ’1)

π‘˜

π‘₯π‘₯π‘˜)/(6π‘˜

4

+Β 1)

Β Β 

Β 

4

(Β /Β (6

1)

k

a

k

k

=

+

Β 

Β 

4

(Β /Β (6

1)

k

b

k

k

=

+

Β 

1)Β Β 

𝑏

π‘˜

β‰₯Β 0

Β Β 

2)Β Β 

4

(

0)

)Β /Β (6

1)

0

k

lim

k

k

+

+Β =

Β 

Then,Β byΒ alternativeΒ seriesΒ testΒ weΒ canΒ converge.Β 

background image

TheΒ termΒ ofΒ series areΒ alternativeΒ andΒ limitΒ ofΒ absoluteΒ valueΒ is 0,Β soΒ series convergeΒ by alternativeΒ seriesΒ 

test.

Β 

QuestionΒ #14Β 

FindΒ theΒ sumΒ ofΒ theΒ series,Β ifΒ itΒ converges:Β 

a)Β Β 

βˆ‘(π‘˜Β =Β 0)

π‘œ

π‘œ(1/3)

π‘˜

Β Β 

b)Β Β 

βˆ‘(π‘˜Β =Β 0)

π‘œ

π‘œ(βˆ’1/2)

π‘˜

Β 

Β 

Answer:Β 

a)Β Β 

βˆ‘(π‘˜Β =Β 0)

π‘œ

π‘œ(1/3)

π‘˜

Β Β 

AΒ seriesΒ ofΒ formΒ Β 

π‘Ÿ

π‘˜

Β Β converges forΒ Β 

|π‘Ÿ|Β <Β 1

Β Β 

Here,Β Β 

π‘ŸΒ Β =Β Β 1/3Β Β <Β Β 1

Β ,Β soΒ theΒ series converges.Β 

Β 

βˆ‘(π‘˜Β =Β 0)

π‘œ

π‘œ(1/3)

π‘˜

=Β 1/(1– (1/3))Β =Β 1/(2/3)Β =Β 3/2

Β Β 

b)Β Β 

βˆ‘(π‘˜Β =Β 0)

π‘œ

π‘œ(βˆ’1/2)

π‘˜

Β Β 

Here,Β Β 

π‘ŸΒ Β =Β Β Β βˆ’1/2

Β ,Β soΒ theΒ series converges.Β 

Β 

βˆ‘(π‘˜Β =Β 0)

π‘œ

π‘œ(βˆ’1/2)

π‘˜

=Β 1/(1– (βˆ’1/2))Β =Β 1/(1Β +Β 1/2)Β =Β 2/3

Β Β 

Β 

Β 

QuestionΒ #15Β 

DetermineΒ whetherΒ theΒ series converges:Β 

Β 

βˆ‘(π‘˜Β =Β 1)

π‘œ

π‘œ4/(π‘˜Β +Β 2)

5

Β 

Β 

background image

Answer:Β 

Β 

βˆ‘(π‘˜Β =Β 1)

π‘œ

π‘œ4/(π‘˜Β +Β 2)

5

Β Β 

Β 

π‘Ž

π‘˜

=Β 4/(π‘˜Β +Β 2)

5

Β Β 

Β a_k = 4/(k^5(1Β + 2/k)^5)Β Β 

LetΒ assumeΒ that,Β 

Β 

𝑏

π‘˜

=Β 1/π‘˜

5

Β Β 

By theΒ limitΒ comparisonΒ test,Β 

Β 

𝐿 =Β π‘™π‘–π‘š

(π‘˜β†’π‘œπ‘œ)

π‘Ž

π‘˜

/𝑏

π‘˜

Β Β 

Β 

𝐿 =Β π‘™π‘–π‘š

(π‘˜β†’π‘œπ‘œ)

(4/(π‘˜

5

(1Β +Β 2/π‘˜)

5

))/(1/π‘˜

5

)

Β Β 

Β 

𝐿 =Β π‘™π‘–π‘š

(π‘˜β†’π‘œπ‘œ)

4/(1Β +Β 2/π‘˜)

5

Β Β 

Β 

𝐿 =Β 4(1Β +Β 2/π‘œπ‘œ)

5

Β Β 

Β 

𝐿 = 4/(1 + 0)

5

Β Β 

Β 

𝐿  =  4

Β Β 

HereΒ Β 

𝐿  =  4

Β Β 

– finiteΒ andΒ non-zero,Β thereforeΒ theΒ seriesΒ is aΒ p-seriesΒ withΒ Β 

𝑝 =Β 5(𝑏

π‘˜

=Β 1/π‘˜

5

)

Β ,Β soΒ theΒ givenΒ 

seriesΒ is converges byΒ theΒ properties ofΒ p-series.Β 

Β 

Β 

background image

QuestionΒ #16Β 

DetermineΒ whetherΒ theΒ followingΒ seriesΒ converges:Β Β 

βˆ‘(π‘˜Β =Β 1)

π‘œ

π‘œ(2/(π‘˜Β +Β 5)

3

)

Β .Β 

Answer:Β 

Β 

βˆ‘(π‘˜Β =Β 1)

π‘œ

π‘œ(2/(π‘˜Β +Β 5)

3

)

Β Β 

Β 

lim

(π‘˜β†’π‘œπ‘œ)

(π‘Ž

π‘˜

)Β =

lim

((π‘˜β†’5)

5

)

(2/(π‘˜Β +Β 5)

3

)Β =Β 9/π‘œπ‘œΒ =Β 0

Β Β 

TheΒ limitΒ ofΒ theΒ terms ofΒ theΒ seriesΒ is 0,Β soΒ theΒ seriesΒ diverges by theΒ divergentΒ test.

Β 

QuestionΒ #17Β 

DetermineΒ whetherΒ theΒ followingΒ seriesΒ convergesΒ ifΒ β€œa” is real:Β 

Β 

βˆ‘(π‘˜Β =Β 1)

π‘œ

π‘œ(1β€“Β π‘Ž/π‘˜)

6

π‘˜

Β 

Β 

Answer:Β 

Β 

βˆ‘(π‘˜Β =Β 1)

π‘œ

π‘œ(1β€“Β π‘Ž/π‘˜)

6

π‘˜

Β Β 

ifΒ Β 

lim

(π‘›β†’π‘œπ‘œ)

π‘Ž

𝑛

!Β =Β 0

,Β thenΒ 

βˆ‘(π‘˜Β =Β 1)

π‘œ

π‘œπ‘Ž

π‘˜

Β Β diverges.Β 

HereΒ Β 

π‘Ž

π‘˜

=Β (1β€“Β π‘Ž/π‘˜)

(π‘˜/6)

Β 

SoΒ Β 

lim

(π‘˜β†’π‘œπ‘œ)

π‘Ž

π‘˜

=

Β Β 

Β 

=Β lim

(π‘˜β†’π‘œπ‘œ)

(1β€“Β π‘Ž/π‘˜)

(π‘˜/6)

=

Β Β 

Β 

=

lim

(𝑒

(π‘˜β†’π‘œπ‘œ)

)

(π‘˜/6)Β π‘₯π‘₯(βˆ’π‘Ž/π‘˜)Β =

Β Β 

Β 

=

lim

(𝑒

(π‘˜β†’π‘œπ‘œ)

)

βˆ’Β π‘Ž/6Β =

Β Β 

Β 

lim

(π‘˜β†’π‘œπ‘œ)

π‘Ž

π‘˜

= 𝑒

(βˆ’π‘Ž/6)

Β Β 

aΒ isΒ realΒ number,Β soΒ Β 

𝑒

(βˆ’π‘Ž/6)

!Β =Β 0

Β Β forΒ realΒ numberΒ a.Β 

Β 

lim

(π‘˜β†’π‘œπ‘œ)

π‘Ž

π‘˜

!Β =Β 0

Β Β 

Thus,Β byΒ divergentΒ test,Β givenΒ seriesΒ is divergent.

Β 

QuestionΒ #18Β 

DetermineΒ whetherΒ theΒ followingΒ seriesΒ converges orΒ diverges:Β 

Β 

βˆ‘(𝑛 =Β 1)

π‘œ

π‘œ(𝑛

3

+ 𝑛

4

)/𝑛

5

.Β 

Β 

Answer:Β 

Β 

βˆ‘(𝑛 =Β 1)

π‘œ

π‘œ(𝑛

3

+ 𝑛

4

)/𝑛

5

=

Β Β 

Β 

=Β βˆ‘(𝑛 =Β 1)

π‘œ

π‘œ1/𝑛

2

+Β βˆ‘

π‘œ1/𝑛

π‘œ

(𝑛=1)

Β 

As Β 

βˆ‘(𝑛 =Β 1)

π‘œ

π‘œ1/𝑛

2

Β Β is convergentΒ by p-series testΒ andΒ 

βˆ‘

π‘œ1/𝑛

π‘œ

(𝑛=1)

Β Β isΒ divergent,Β 

SeriesΒ divergesΒ becauseΒ weΒ canΒ break theΒ seriesΒ upΒ intoΒ aΒ convergentΒ p-series andΒ aΒ divergentΒ p-series.

Β 

QuestionΒ #19Β 

DetermineΒ whetherΒ theΒ followingΒ seriesΒ converges orΒ diverges:Β 

Β 

βˆ‘(π‘˜Β =Β 1)

π‘œ

π‘œ3/(π‘˜Β +Β 4)

3

Β 

Β 

background image

Answer:Β 

Β 

βˆ‘(π‘˜Β =Β 1)

π‘œ

π‘œ3/(π‘˜Β +Β 4)

3

=

Β Β 

Β 

=Β βˆ‘(π‘˜Β =Β 1)

π‘œ

π‘œ3/π‘˜

3

Β Β 

ByΒ p-series testΒ Β 

βˆ‘(π‘˜Β =Β 1)

π‘œ

π‘œ1/β„Ž

𝑝

, 𝑝 >Β 1

Β 

– converges,Β Β 

𝑝  <Β Β 1

Β Β 

– diverges.Β 

SoΒ this series converges,Β causeΒ it’s aΒ p-seriesΒ withΒ pΒ = 3.

Β 

QuestionΒ #20Β 

Please,Β describeΒ theΒ applicationΒ ofΒ theΒ AlternatingΒ Series TestΒ forΒ eachΒ series:Β 

a)Β Β 

βˆ‘(𝑛 =Β 1)

π‘œ

π‘œ(βˆ’1)

𝑛

/𝑛

Β Β 

b)Β Β 

βˆ‘(𝑛 =Β 1)

π‘œ

π‘œ1/𝑛

Β Β 

c)Β Β 

βˆ‘(𝑛 =Β 1)

π‘œ

π‘œ(βˆ’1)

𝑛

Β 

Β 

Answer:Β 

a)Β Β 

βˆ‘(𝑛 =Β 1)

π‘œ

π‘œ(βˆ’1)

𝑛

/𝑛

Β Β 

– theΒ givenΒ series convergesΒ 

b)Β Β 

βˆ‘(𝑛 =Β 1)

π‘œ

π‘œ1/𝑛

Β Β 

– theΒ AlternatinΒ SeriesΒ TestΒ isΒ inconclusiveΒ orΒ cannotΒ beΒ appliedΒ toΒ theΒ seriesΒ 

c)Β Β 

βˆ‘(𝑛 =Β 1)

π‘œ

π‘œ(βˆ’1)

𝑛

Β Β 

– theΒ AlternatinΒ Series TestΒ isΒ inconclusiveΒ orΒ cannotΒ beΒ appliedΒ toΒ theΒ seriesΒ 

Β 

of 10